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In the two-dimensional plane, a set of nodes XI> X2, •.. , X n is given. It is desired
to intcrpolatc arbitrary data given at the nodes by a linear combination of the func­
tions h,(x)= Ilx-x,ll. Here the norm is the Ij-norm. For this purpose, one can
employ the space Pi'!I! of all continuous piecewise-linear functions on the rec­
tangular grid generated by the nodes. Interpolation at the nodes by this larger space
is quite easy. By adding an appropriate iii'!I!-function that vanishes on the nodes,
we can obtain the linear combination of hI> hz, ..., hn that interpolates the data.
This algorithm is much more efficient than the straightforward method of simply
solving the linear system of equations L cjhj(x,) = di . © 1991 Academic Press. Inc.

1. INTRODUCTION

Throughout the paper, .AI denotes a set of n distinct points (nodes) in [R2

designated by XI' X 2 , ... , Xn- The basic problem of two-dimensional inter­
polation addressed here is as follows. A "data-function" d: .AI -+ IR is given,
and we seek a function I: IRn

-+ IR such that I I.AI = d; i.e., I(x i ) = di for
i = 1, 2, ..., n. Such a function I is said to interpolate d. Usually the search
for I is restricted to a class of functions that (a) are easily computed and
(b) have some prescribed smoothness.

We seek an interpolant in the linear space generated by the n functions
hj(x) = IIx-xj ll (1 "'S}"'Sn), where the norm is chosen to be the lcnorm.
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The existence of an interpolant f = I,7= 1 cjhj for arbitrary data depends
upon the invertibility of the interpolation matrix A, whose elements are
Aij =hj(x;). In [lJ it was shown that a necessary and sufficient condition
for the nonsingularity of A is that JV contain no closed rectilinear path.

Notation of [1 J will be briefly reviewed here. If x is a point in iR1 2
, we

display its coordinates by writing x = (s, t). The nodes are x; = (s;, Two
coordinate projections are defined by Px = sand Qx = t. We set

P(JV) = {(J], (J2, , (Jrn},

Q(JV) = {'I' '2' , 'k}'

The rectangular grid and the rectangular hull determined by JV are

RG = { (J], (J 2, ... , (Jrn} X { , l' '2' ..., 'k}

RH= {(s, t): (JI ~s~(Jmand 'I ~t~'d·

The horizontal lines t = 'j and the vertical lines s = (J; divide the plane into
(m +1)(k + 1) rectangles, some of which are unbounded. The space [1Jf£
consists of all continuous functions on iR1 2 that are linear on each of these
rectangles. The space fYlf!,§ is the linear span of the set {h 15 h2 , ... , hn }. The
functions h; are defined by

h;(x) = Ilx-x;11 = Is-s;1 + It- t;l·

A path is defined as an ordered finite set [y], 12, ..., Yq J in RG such that
the line segments joining consecutive points have positive length and are
alternately horizontal and vertical. A path is said to be closed if q is even,
if Yq =f. Y I, and if the line segment joining Y 1 with 12 is perpendicular to the
line segment joining YI with Yq .

2. AN EQUIVALENCE RELAnON

In this section, we begin an analysis which leads to a description of f!ltf!,§

as a subspace of [1J2. The description is in the "dual" form, which is to say
that f!ltf!,§ will be exhibited as the intersection of hyperplanes.

DEFINITION. An equivalence relation is introduced in JV by declaring
that two nodes are equivalent if there is a path in JV that connects them.
We also declare each node equivalent to itself.

EXAMPLE. A set JV having two equivalence classes is shown in Fig. 2.1.
The following elementary lemma is given without proof.
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I

•
FIGURE 2.1

2.1. LEMMA. (a) If .h;;, Jill, ..., JV;: are the equivalence classes that com­
pose .AI, then the sets P(JV;) are pairwise disjoint.

(b) These equivalences hold for 1~ j ~ n, 0~ i ~ r:

Sj E P(JV;) <:;- Xj E JV; <:;- tj E Q(JV;).

2.2. LEMMA. If.AI contains no closed path and consists of just one
equivalence class, then m + k = n + 1.

Proof Since.AI contains no closed path, we infer from 3.2 in [1] that
some grid line generated by .AI contains only one node. We can assume,
without loss of generality, that the horizontal line through XI contains no
other node. We now construct a graph-theoretic tree having root X I' At
level 1 we place X I' At level 2 we place all nodes (other than xd that lie
on the vertical line through x I' At level 3 we place all nodes not on levels
2 or 1 which lie on horizontal lines through the nodes on level 2. This
process is continued as long as possible. For a formal description, let L;
denote the set of nodes at level i. Then L I = {xd, and recursively we put

L;+ I = [.AI n Q-I(Q(L;))]\[L I U u LJ
L i + I = [.AI n P-I(P(L;))]\[L I U u LJ

if i is even

if i is odd.

The connections in the tree are described as follows. A node v on level i + 1
will be joined to a node u on level i if and only if the nodes u and v lie on
the same horizontal line (when i is even) or on the same vertical line (when
i is odd). Every path in .AI that starts at x I can be traced through the
successive levels of the tree. Since every node is connected to x I by a path,
every node is in the tree.

We shall now prove that each point of J-; (i> 1) accounts for one new
grid line. Suppose, on the contrary, that a node Yo in L i does not generate



PIECEWISE-LINEAR RADIAL FUNCTIONS 41

a new line. Say i is odd, so that the new grid lines generated by points of
L; are vertical. Then there exists a node Zo E Lj , with j:::';; i, Zo # Yo, and
P(zo) = P(Yo)' By tracing backwards through the tree from Zo to Yo we
eventually arrive at a first common node (which may be x d. This process
generates two paths

and

in which zp and Yq are the same point in the tree. Since zp is the first
common node, Zp-l#Yq-l' Then

is a path. An application of 3.6 in [1] shows that this path contains a
closed subpath, contrary to hypothesis.

Since each node occurs exactly once in the tree and each node generates
one grid line (except for Xl which generates two), the number of grid lines
is n + 1, the number of horizontal lines is k, and the number of vertical
lines is m, and hence n + 1 = m + k (see Fig. 2.2). I

2.3. THEOREM. Let JV be a node set having n points and containing no
closed path. If r + 1 denotes the number of equivalence classes in JV, then
dim (ljJ!l' = n + r + 4.

Proof By definition, m = # P(JV) and k = # Q(JV). By applying 2.2 to
each equivalence class JV; we obtain

# P(JV;) + # Q(JV;) = # JJI; + 1.
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FIG. 2.2. A node set and its tree.
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Since the set P(JV;) are pairwise disjoint and since the same is true of the
sets Q(JV;), we have, by 2.1 in [1],

r

dim &'2 = m + k + 3 = I [# P(JV;) + # Q(JV;)] + 3
;=0

r

= I [# JV; + 1] + 3 = n + r + 4. I
;=0

3. ANNIHILATING FUNCTIONALS FOR fJlrJU

The space fJlrJU generated by the functions x~ Ilx - xj II is a subspace of
&'2. In this section we describe fJlrJU in the dual manner-that is, as a
family of functions in &'.P that satisfy a set of homogeneous linear equa­
tions. To this end, we shall define a set of functionals Ll o, ..., Ll r + 4 which
annihilate gfrJU.

All the notation previously defined is retained here, and in addition we
set

O"O=O"l-Je-\

1'"0='r 1 -Je- 1,

O"m+l=O"m+Je-l

'rk+l='rk+ Je - 1
.

Two definitions are given next, along with some elementary consequen­
ces without proofs.

3.1. DEFINITION. For each 0" E P(JV), we define a linear functional Ij; (J
which can act on any univariate piecewise linear function:

1j;(J(U) = lim u'(s)-lim u'(s).
da sfa

3.2. LEMMA. For the function u(S)=IS-IXI, we have lj;a(u)=2 ijlX=O"
and Ij; (J( u) = 0 if IX #- 0".

3.3. DEFINITION. For 0 ~ i ~ r we define

3.4. LEMMA. Let u(s)= IS-IXI. Then 'P;(u)=2 if IXEP(JV;) and
'P; (u) = 0 if IX ¢ P(JV;).
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In the same manner, we define functionals e, and e i acting on functions
of t. Then we define Ai on :!J£'(.JV) as follows. Given f E:!J£', write

f(s, t) = u(s) + v(t)

with UE&>£'(P(%)) and VE:!J£'(Q(%)). (This expression is not unique.
Then define

(0 ~ i ~ r).

The definition is proper, for if another expression for f is chosen it must be
of the form

f(s, t)= [u(s)+c] + [v(s)-c]

for some constant c. But ljJ Au + c) = ljJ Au), since ljJ (5 measures the jump
in the derivative at (J. Hence rPAu+c)= lJfi(u) and similarly
e i (v - c) = e i (v).

3.5. LEMMA. Each functional L1 i, for °~ i ~ r, annihilates fYtfJD.

Proof It suffices to prove that Lqhj ) = 0, where

hj(x) = Ilx-xill = Is-sjl + It-tjl =u(s)+v(s) (1 ~j~n).

If Xj E u~ then by 2.1, Sj belongs only to P(~) and tj belongs only to
Q(~). Hence either 'P;(u)=e i (v)=2 or 'Pi(U)=ei(v)=o. Consequently
A;(hJ = O. I

We now define four additional functionals L1 i (for r + 1 :;;:; i:;;:; r + 4) which
annihilate ~f!J. Points Yi and Zi are defined as in Fig. 3.1 (which is not
drawn to scale). The points Z I, ... , Z4 are at the corners of the rectangular

Y2

Z Y3
Z4

RG

Z2
Yl -"'a

l

!Y4

FIGURE 3.1
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grid. Hence Zl = (am, Ok), Z2 = (am, od, Z3 = (a1> 01), and Z4 = (a1> Ok)' The
points Yb ..., Y4 are situated as shown, and satisfy

IIY1 -z3111 = IIY2 - z4111 = IlY3 -zl111 = \IY4 -z2111 = IIz2 -z4111 = A-I.

Now we put, for 1~ i ~ 4,

The circumflex signifies a point-evaluation functional.

3.6. LEMMA. The four functionals Ll r+1, ... , Ll r+4 annihilate r!Il(J8.

Proof We wish to show that Llr+i(hj)=O for j=1, ...,n. Fixingj, we
observe that

4 4

L hj(Zi) = L Ilzi - xjl11 = perimeter of RG.
i=l i= 1

For a fixed i, let Za be the vertex opposite Zi' Then

hj(y;) +hj(z;) = IIYi - X j 111 + Ilzi - X j 111

= IIYi- Zalll + IIZa- Xj lll + Ilxj-zilll

= II z2- z4111 + II z2- z4111
= perimeter of RG.

By the definition of Ll r+i, we have Llr+i(hj)=O. I
The proof that {,1 0, ,11' ... , ,1 r + 4} spans r!Il(J8l- is deferred to Section 5.

4. THE SUBSPACE .tf

4.1. DEFINITIONS. The subspace .tf is defined by

.tf= {JE,q}J'p(JV):fIJV=O}.

Further definitions follow. Functions uo, U1' ... , U r are defined in g'>'p(IR) by
specifying their knots to be aI, ..., am and specifying their values to be

a· E,q}J(JV)
lh . 1 (O~j~m+ 1).

ot erWlse

A typical function ui IS graphed in Fig.4.1. Notice that ui(aO) =
U i (am + 1)=O for all i.
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FIGURE 4.1

Functions vo, VI> ••• , Vr are defined to be piecewise linear with knots at
'1' ..., 'k, and having these values

if 'jEQ(JV;) ( . k 1). O~J:::; + .
otherwIse

Then we define gi(S, t) = ui(s) - v;(t) for 0:::; i:::; r.

4.2. LEMMA. The functions go, ..., gr belong to JIt.

Proof Let x j be any node. Let v~ be the equivalence class containing
Xj' Then Sj E P(~) and tj E Q(~): by 2.1. We conclude that gi(Xj ) = O. I

We now define four additional &!:t functions gi for r + 1 :::; i:::; r+ 4.
Each of these vanishes on RG. At the special points Yj we assign these
values:

1~ i, j~ 4.

It is clear that each of these functions belongs to .It and the
set {g r + 10 ..., gr + 4} is linearly independent. Observe also that
Llr+i(gr+j) = bij' by the definition of Ll r+i in Section 3.

4.3. LEMMA. The four functions gr+ 1, .•., gr+ 4 form a basis for the sub­
space of&2 consisting offunctions which vanish on the rectangular grid.

Proof Letfbe a &!:t-function such thatfIRG=O. Put Ci = f(yJ We
assert that f='L1c i gr+i• For points in RG this is true since each gr+i
vanishes on RG. For points outside RG, we use the fact that the values of
f at three vertices of a rectangle determine its value at the fourth vertex.
With this, we see that f is .completely determined by the four values
f(yd,···,f(Y4)· For example, the values f(yd, f((Jl, ,d=f((Jl' '2)=0
determine f in the strip where, 1 :::; t:::; '2 and s:::; (J l' I

4.4. LEMMA. The function g = go + ... + gr vanishes on the rectangular
grid.



46 LIGHT AND CHENEY

Proof Observe that gEflJ!l'. By 2.1 in [1J, it suffices to prove that g
vanishes at the. points

We have

r r

g(0"1,1)= L u;(O"d- L v;('j)=1-1=0
;=0 ;=0

because 0"1 belongs to exactly one set P(JY;;,) and u"(O"d = 1, while all other
u;(O"d=O. Similarly, L:~~o V;('j) = 1. Analogous arguments are used at the
other points. I

4.5. LEMMA. The set {gl' g2, ..., gr+4} is linearly independent.

Proof Suppose that L:~=I c;g; - 1:;=1 a;gr+;=O. It follows that

r 4

L c;giI RG = L a;gr+;IRG=O.
;~ I i~ I

Select a point (s, t) with s E P(NJ, j =I- 0, t E Q(JV;;). Then

r r

0= L c;g;(s,t)= L ci[u;(s)-v;(t)J=cj.
;~I i=1

Next evaluateL:;~1 a;gr+; at Yj to see that aj =0. I

4.6. LEMMA. Let f be a [ljJ!l'-function which is constant on some equiv­
alence class, JV;. Let f(s, t) = u(s) + v(t). Then u is constant on P(JV;) and v
is constant on Q(JV;).

Proof Let sand s' be any two points of P(JV;). Then there exist points
t and t' such that (s, t) E JV; and (s', t') E JV;. By the definition of an equiv­
alence class, the points (s, t) and (s', t') are connected by an open path
whose vertices lie in JV;. On any horizontal segment of this path, say from
(0", ,) to (0"', r), we have (sincefisconstant on JV;)

u( 0") + v(,) = u(0"') + v( r )

whence u(O") = u(O"'). On any vertical segment also the value of u does not
change. Thus as the path is traversed, the value of u does not change, and
u(s) = u(s'). Similarly, v is constant on Q(JV;). I
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4.7. THEOREM. Suppose that the node set % has exactly n poi' _, con­
tains no closed path, and has r + 1 equivalence classes. Then

(i ) rY!f? = f!llf!J (f) A

(ii) {glo g2' ..., gr+4} is a basis for A

(iii) L;~6 gi-gr+2+gr+3-gr+4=O.

Proof Obviously f!llf!J + A c flJ!f? If1 EflJ!f? then by 7.8 in [1 J there
is a unique hE f!llf!J that interpolates f on Hence 1 - h EA and 1 E
f!llf!J +A. Thus rY!f? = f!llf!J +A. That f!llf!J n A = 0 follows from 7.8 in
[lJ, since the only f!llf!J interpolant for zero data on JV~ is the O-element of
f!llf!J.

From 2.3, dim flJ!f? = n + r + 4. Since dim f!llf!J =n, we have dim A =
r +4. By 4.5, {g l, ... , g r + 4} is linearly independent and therefore is a basis
for A.

Now let g=L~gi' By 4.4, g is a rY!f?-function which vanishes on the
rectangular grid. By 4.3, there exist coefficients !X r + i such that g=
L1 (J.r+igr+i· By evaluating at the four points Yl, ... , Y4 we find that
!X r + i =(-lV I

5. A DUAL ALGORITHM FOR f!llf!J-INTERPOLATION

The direct method of computing an f!llf!J-interpolant to a data function
simply solves the interpolation equations

n

L: aj Ilx, - xj III = d,
j= 1

(1 ~ i ~ n).

An alternative method proceeds by first solving the interpolation problem
with a function 1 in flJ!f? One can use the method of Section 4 in [1] to
do this. By 4.7,1 has a unique representation

I=h+ g, hEf!llf!J, gEA.

Also by 4.7, g is expressible in terms of the functions gi' say g = L;~t Gj gj'
The coefficients aj can be determined from the condition1 - g E rllf!J, which
is equivalent to

.di(f - g)=O, 1~i~r+4

by 5.10 infra. These equations lead to the system

r+ 4

L: .di(gj)aj = LJi(f)
j~1

(1 ~ i~ r+ 4).

The invertibility of the matrix (.d,(gJ) follows from 7.8 in [1].

640/64/1-4
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In order to carry out this dual algorithm, it will be necessary to evaluate
the elements A;(gj) in the coefficient matrix. In this section these elements
are computed.

Recall the definitions of A; and gj given in Sections 3 and 4. In addition,
define functionals lj;:- and lj;;; for any (J E lR by the equations

lj;:(u) = lim u'(s)
si".

lj;;;(u) = lim u'(s).
st".

5.1. LEMMA. If 0 ~ i ~ r, then the value of 'P;(u;) is the sum of all terms
((J I' -1 - (J 1') -1 for which either

(i) (J I' E P(JV;) and (J1'-1 ¢ P(JV;) or

(ii) (J I' ¢ P(JV;) and (J1'-1 E P(JV;).

Proof If (J I' E P(JV;) then

lj;~(u;)= [u;((JI'+d-Ui((JI')J((JI'+I-(JI')-1

= {((J I' - (J I' + d- 1 ~f (J I' + 1 ¢ P(JV;)
o If (J I' + 1 E P(JV;).

Similarly,

if (J1'-1 ¢ P(JV;)
if (J I' _ 1 E P(JV;).

It follows that

'P;(u;) = L {lj;".(u;): (J E P(JV;)}

= L {lj;:- (u;): (J E P(JV;)} - L {lj;;; (u;): (J E P(JV;)}

= L {( (J I' - (J I' + 1) - 1: (J I' E P(JV;) and (J I' + 1 ¢ P(JV;) }

- L {( (J I' - (J I' - 1 ) - 1: (JI' E P(JV;) and (J I' - 1 ¢ P(JV;) }

= L {((J1'-1 - (J 1')~I: (J1'-1 E P(JV;) and (J I' ¢ P(JV;)}

+L {( (J I' - 1 - (J1') - 1: (J I' E P(JV;) and (J I' - l¢ P(JV;) }. I
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5.2. LEMMA. If 0:::;; i, j:::;; rand i =I- j, then 'P;(uj ) is the sum of all terms
(0"1'-0"1'_1)-1 where either

(i) 0"I' E P(JV;) and 0"1'- 1 E P(Aj) or

(ii) O"I'EP(Aj) and 0"1'-1 EP(JV;).

Proof If 0"1' E P(JV;) then

l/t~(Uj)=Uj(0"1'+1)(0"1'+1-0"1')-1.

This is (0"1' + 1 - 0"1') -1 if 0"1'+ 1 E P(Aj) and is 0 otherwise. Hence as in the
preceding proof

The calculation of L {l/t; (uJ: 0" E P(JV;)} is similar. I
All of what has been proved for the matrix with elements 'P;(uj ) can be

proved for 8;(vj ), mutatis mutandis. Then for 0:::;; i, j:::;; r,

In what follows L1 ;(gj) will be computed in the remaining cases,
r < i:::;; r+4 and r< j:::;; r+ 4. It is necessary to single out the equivalence
classes which contain nodes on the boundary of RH. To do so, we define
integers 8 v for 0:::;; v :::;; 4 by the equations

The indices 81> 82' 83, 84 are not necessarily distinct.

5.3. LEMMA. The following formula is valid

(O:::;;i:::;;r, 1 :::;;v:::;;4).

In this formula, A= liz2 - z 411 - 1 and b is the Kronecker symbol.

Proof Recall that gr + v is a .9'2"-function which vanishes on RG and
takes these values:

(l ~ i, v ~4).
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This function can be expressed in the form

(1 ~ v ~4).

The functions on the right in this equation take zero values on (Jj and 1:j
except in these cases:

Ur+l((JO) = 1, Vr+2(1:k+l) = -1, ur+3((Jm+d = 1, Vr+4(1:0) = -1.

Consequently we have

l/Jal(ur+d = ((J 1- (J0)-1 = A, l/J"JUr+3) = A,

8,,/Vr+4) = -A, 8"k(Vr+2) = -A.

In all other cases, l/Jaj(u r + v ) = 8"j(v r + v ) =O. Hence

if (J 1 E P(JV;)
if (J 1 ¢: P(JV;).

In a similar fashion we find that

A;(gr+2) = e;(Vr+2) = -A (j(i, Gd

A;(gr+3) = lJ';(Ur+3) = A(j(i, G2)

A;(gr+4) = e;(Vr+4) = -A (j(i, G3).

Hence the formula in the statement of the lemma is valid, with the inter­
pretation that GO = G4· I

5.4. LEMMA. For 1~ v~ 4 and 0 ~ j ~ r we have

CVj =Ar+v(gj) = -jij+ (-1)v (j(j, Gv_ d

in which jij=L~=1 (-1)"(j(j,Gv)·

Proof One can verify these formulae:

gj(Yv)= (-If b(j, GV +2)

gj(Zv) = (-1f (j(j, G.) + (_1)V+l (j(j, Gv+d

gj(zd + gj(Z2) + gj(Z3) + gj(Z4) = 2jij.
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For example, when v= 1, the first formula is proved by observing that

gj(yd#O=>r 1 EQ(Aj)=>j=83=>gj(yd= -vj(r 1 )=-1.

When v = 3, the second formula is established as follows. Observe
that gj(Z3)#O only if j=83 or j=84' If j=83#84' then gj(Z3)=
uj(ad-vj(rd=O-I=-1. Ifj=84#83' then gj(z3)=uj(ad=1. Ifj=
83 = 84 then gj(Z3) = 1-1 = O. With these formulae established, one verifies
easily the assertion of the lemma. I

Proof We prove just one of these, viz. br + z - ),b'l = O. The others are
similar. Construct a function v having the appearance shown in Fig. 5.l.
Then putf(s, t) = v(t). We have

if v=2

otherwise (1 ::::; v~ 4)

if i = 8 1

otherwise (0 ::::; i::::; r).

Consequently

r+4°= L bi AiU) = -),b'l + br + z· I
;=0

5.6. LEMMA. IfL.:.;:ri biA;=O, then

br+ 1 + br+ z + br+ 3 + br+ 4 = (b,z - beJ/«(Jm - ad·

Proof Consider the function U E &'.'.t'(fRi) whose graph is shown in
Fig. 5.2. Putf(s, t)=u(s). Then

f(Z3) =f(Z4) = f(yd = f(Yz) = 1

f(zz) = f(zd = f(Y3) = f(Y4) = o.

FIGURE 5.1
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FIGURE 5.2

Consequently Ll r+ v(f) = -1 for 1 ::::; v::::; 4. For 0::::; i::::; r we have Ll i(f) =0
in all cases with two exceptions, namely, Ll 8/f) = - Ll 84(f) = (ITm- lTd - I.
Thus

r+4 4

0= L: biLli(f)= - L: br+v+(b82-be4)(ITm-ITd-1. I
i=O v=1

s::::;c

c<s<a
a<s<b
s;?; b.

Proof The hypothesis states that the number of equivalence classes is
less than n. Consequently some equivalence class contains at least two
elements. By a renumbering of the equivalence classes we can assume that
# JVo ;?; 2. Either # P(JVo) ;?; 2 or # Q(JVo) ~ 2, and we assume the former.
Let a, bE P(JVo), with a< b. Select any j E {I, ..., r}. We shall prove that
bj = boo Select C E P(JIj).

Case 1. Assume c < a. Define f by

{

a,
(a - c) -1 (s - c),

f(s, t) =u(s) = -(b-a)-l (s-b),

0,

Thenf E f!jJ2, and for each s, f(s,' ) is constant. Furthermore, fvanishes on
the eight points y" Zv' As a consequence Llr+i(f)=O for l::::;i::::;4. For
0::::; i::::; r, Ll i(f) = 'Pi (u). Since 'Pi measures jumps in derivatives at points of
P(JV;), we have 'Pi (u) =°for all i (except i =°and i = j) in the range
0::::; i::::; r. Thus after computing we have

Case 2. We assume that a < c < b. Define

{

a,
(c-a)-l (s-a),

f(s, t)=u(s)= -(b-C)-l (s-b),

0,

s::::;a
a::::;s::::;c
c::::;s::::;b
s;?; b.
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Proceeding as before we arrive at

Case 3. b < c. The calculations are like those in Case 1. I

5.8. LEMMA. Let r + 1 = n and L:;~ri bi Ai = O. Then for i = 0, 1, ... , r,
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where Ai = (0" rn - 0" )/(0"rn - 0" d and 0" E P(JV;).

Proof If i = C4 or i = 8 2 the formula is trivial. We therefore assume i =F C4

flnd i=F82' Then a=FO"I and (J=F(Jrn' Construct a function UE&£'(IR) as
shown in Fig. 5.3. Letf(s, t)=u(s). Then

Consequently

whence

5.9. LEMMA. Let r + 1 = n and L:;~ri bi Ai = O. Then bo= bi = ... = br.

Proof From 5.7, bi = Aibq + (1- A;)b"2 where °< )'i < 1, i = 0, ..., r.
Assume that bq ~b"2' From the equivalent lemma to 5.7 using the
t-variable,

where °< Ili < 1, i = 0, 1, ..., r.

From this we see that either c 1 = 84 and C2 = 8 3 or c 1 = c2, c3 = C4'

Case (i). CI=C4 and C2=83' Then br+l+br+2=br+3+br+4=O by
5.6, and so the previous lemma shows b"4 = b"z' It then follows that bq =
b"2=b j , i=O, ...,r.

~~~j-I-----I

(To (Tl (T (Trn O"rn+l

FIGURE 5.3
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Case (ii). 81=82 and 83=84' Then br+2+br+3=br+l +br+4 =0 by
5.6, and so the previous lemma shows again that b£4 = bw It then follows
again that b'4 =b'2 = b;, i = 0, ..., r. I

5.10. THEOREM. If.AI contains no closed path, then the space :!JtflJ~

is spanned by the set {Ll o, ..., Ll r+4 }. The only dependence among these
functionals, aside from a scalar multiple, is

r 4

L Ll; + 2 L (- 1f + 1 Ll r+ ; = 0.
;=0 ;~ 1

Proof IfL:;;+4 biLl; =0, then by 5.7 and 5.9, bo=b1 = ... =br. By 5.5,
br + v = (-1)" 2bo for v = 1, ..., 4. This proves the second assertion of the
theorem and that {Ll 0, ..., Ll r+ 4} spans a space of dimension r + 4. This
space is in !!llflJ~ by 3.5 and 3.6. By 2.3, we have

n + r + 4 = dim;Jj>:l! = dim !!llflJ + dim !!llflJ~ = n + dim !!llfJ#~

and so dim !!llflJ.l. = r + 4. I
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