Interpolation by Piecewise-Linear Radial Basis Functions, II

W. A. LIGHT*

Mathematics Department, University of Lancaster, Lancaster LA1 4YL, England

AND

E. W. CHENEY

Mathematics Department, University of Texas, Austin, Texas 78712

Communicated by Oved Shisha

Received March 9, 1989

In the two-dimensional plane, a set of nodes $x_1, x_2, ..., x_n$ is given. It is desired to interpolate arbitrary data given at the nodes by a linear combination of the functions $h_i(x) = ||x - x_i||$. Here the norm is the l_1 -norm. For this purpose, one can employ the space \mathscr{PL} of all continuous piecewise-linear functions on the rectangular grid generated by the nodes. Interpolation at the nodes by this larger space is quite easy. By adding an appropriate \mathscr{PL} -function that vanishes on the nodes, we can obtain the linear combination of $h_1, h_2, ..., h_n$ that interpolates the data. This algorithm is much more efficient than the straightforward method of simply solving the linear system of equations $\sum c_i h_j(x_i) = d_i$. @ 1991 Academic Press, Inc.

1. INTRODUCTION

Throughout the paper, \mathcal{N} denotes a set of *n* distinct points (*nodes*) in \mathbb{R}^2 designated by $x_1, x_2, ..., x_n$. The basic problem of two-dimensional interpolation addressed here is as follows. A "data-function" $d: \mathcal{N} \to \mathbb{R}$ is given, and we seek a function $f: \mathbb{R}^n \to \mathbb{R}$ such that $f | \mathcal{N} = d$; i.e., $f(x_i) = d_i$ for i = 1, 2, ..., n. Such a function f is said to *interpolate d*. Usually the search for f is restricted to a class of functions that (a) are easily computed and (b) have some prescribed smoothness.

We seek an interpolant in the linear space generated by the *n* functions $h_i(x) = ||x - x_j||$ $(1 \le j \le n)$, where the norm is chosen to be the l_1 -norm.

^{*} Supported by NATO Grant 85/0095.

The existence of an interpolant $f = \sum_{j=1}^{n} c_j h_j$ for arbitrary data depends upon the invertibility of the *interpolation matrix* A, whose elements are $A_{ij} = h_j(x_i)$. In [1] it was shown that a necessary and sufficient condition for the nonsingularity of A is that \mathcal{N} contain no closed rectilinear path.

Notation of [1] will be briefly reviewed here. If x is a point in \mathbb{R}^2 , we display its coordinates by writing x = (s, t). The nodes are $x_i = (s_i, t_i)$. Two coordinate projections are defined by Px = s and Qx = t. We set

$$P(\mathcal{N}) = \{\sigma_1, \sigma_2, ..., \sigma_m\}, \qquad \sigma_1 < \sigma_2 < \cdots < \sigma_m$$
$$Q(\mathcal{N}) = \{\tau_1, \tau_2, ..., \tau_k\}, \qquad \tau_1 < \tau_2 < \cdots < \tau_k.$$

The rectangular grid and the rectangular hull determined by \mathcal{N} are

$$RG = \{\sigma_1, \sigma_2, ..., \sigma_m\} \times \{\tau_1, \tau_2, ..., \tau_k\}$$
$$RH = \{(s, t): \sigma_1 \leq s \leq \sigma_m \text{ and } \tau_1 \leq t \leq \tau_k\}.$$

The horizontal lines $t = \tau_j$ and the vertical lines $s = \sigma_i$ divide the plane into (m+1)(k+1) rectangles, some of which are unbounded. The space \mathscr{PL} consists of all continuous functions on \mathbb{R}^2 that are linear on each of these rectangles. The space \mathscr{RB} is the linear span of the set $\{h_1, h_2, ..., h_n\}$. The functions h_i are defined by

$$h_i(x) = ||x - x_i|| = |s - s_i| + |t - t_i|.$$

A path is defined as an ordered finite set $[y_1, y_2, ..., y_q]$ in RG such that the line segments joining consecutive points have positive length and are alternately horizontal and vertical. A path is said to be closed if q is even, if $y_q \neq y_1$, and if the line segment joining y_1 with y_2 is perpendicular to the line segment joining y_1 with y_q .

2. AN EQUIVALENCE RELATION

In this section, we begin an analysis which leads to a description of $\Re \mathscr{B}$ as a subspace of \mathscr{PL} . The description is in the "dual" form, which is to say that $\Re \mathscr{B}$ will be exhibited as the intersection of hyperplanes.

DEFINITION. An equivalence relation is introduced in \mathcal{N} by declaring that two nodes are equivalent if there is a path in \mathcal{N} that connects them. We also declare each node equivalent to itself.

EXAMPLE. A set \mathcal{N} having two equivalence classes is shown in Fig. 2.1. The following elementary lemma is given without proof.

FIGURE 2.1

2.1. LEMMA. (a) If \mathcal{N}_0 , \mathcal{N}_1 , ..., \mathcal{N}_r are the equivalence classes that compose \mathcal{N} , then the sets $P(\mathcal{N}_i)$ are pairwise disjoint.

(b) These equivalences hold for $1 \le j \le n$, $0 \le i \le r$:

$$s_j \in P(\mathcal{N}_i) \Leftrightarrow x_j \in \mathcal{N}_i \Leftrightarrow t_j \in Q(\mathcal{N}_i).$$

2.2. LEMMA. If \mathcal{N} contains no closed path and consists of just one equivalence class, then m + k = n + 1.

Proof. Since \mathcal{N} contains no closed path, we infer from 3.2 in [1] that some grid line generated by \mathcal{N} contains only one node. We can assume, without loss of generality, that the horizontal line through x_1 contains no other node. We now construct a graph-theoretic tree having root x_1 . At level 1 we place x_1 . At level 2 we place all nodes (other than x_1) that lie on the vertical line through x_1 . At level 3 we place all nodes not on levels 2 or 1 which lie on horizontal lines through the nodes on level 2. This process is continued as long as possible. For a formal description, let L_i denote the set of nodes at level *i*. Then $L_1 = \{x_1\}$, and recursively we put

$$L_{i+1} = [\mathcal{N} \cap Q^{-1}(Q(L_i))] \setminus [L_1 \cup \cdots \cup L_i] \quad \text{if } i \text{ is even}$$
$$L_{i+1} = [\mathcal{N} \cap P^{-1}(P(L_i))] \setminus [L_1 \cup \cdots \cup L_i] \quad \text{if } i \text{ is odd.}$$

The connections in the tree are described as follows. A node v on level i+1 will be joined to a node u on level i if and only if the nodes u and v lie on the same horizontal line (when i is even) or on the same vertical line (when i is odd). Every path in \mathcal{N} that starts at x_1 can be traced through the successive levels of the tree. Since every node is connected to x_1 by a path, every node is in the tree.

We shall now prove that each point of L_i (i > 1) accounts for one new grid line. Suppose, on the contrary, that a node y_0 in L_i does not generate

a new line. Say *i* is odd, so that the new grid lines generated by points of L_i are vertical. Then there exists a node $z_0 \in L_j$, with $j \le i$, $z_0 \ne y_0$, and $P(z_0) = P(y_0)$. By tracing backwards through the tree from z_0 to y_0 we eventually arrive at a first common node (which may be x_1). This process generates two paths

$$[z_0, z_1, ..., z_p]$$
 and $[y_0, y_1, ..., y_q]$

in which z_p and y_q are the same point in the tree. Since z_p is the first common node, $z_{p-1} \neq y_{q-1}$. Then

$$[z_0, z_1, ..., z_{p-1}, y_{q-1}, y_{q-2}, ..., y_0]$$

is a path. An application of 3.6 in [1] shows that this path contains a closed subpath, contrary to hypothesis.

Since each node occurs exactly once in the tree and each node generates one grid line (except for x_1 which generates two), the number of grid lines is n+1, the number of horizontal lines is k, and the number of vertical lines is m, and hence n+1=m+k (see Fig. 2.2).

2.3. THEOREM. Let \mathcal{N} be a node set having n points and containing no closed path. If r + 1 denotes the number of equivalence classes in \mathcal{N} , then dim $\mathscr{PL} = n + r + 4$.

Proof. By definition, $m = \# P(\mathcal{N})$ and $k = \# Q(\mathcal{N})$. By applying 2.2 to each equivalence class \mathcal{N}_i we obtain

$$\# P(\mathcal{N}_i) + \# Q(\mathcal{N}_i) = \# \mathcal{N}_i + 1.$$

FIG. 2.2. A node set and its tree.

Since the set $P(\mathcal{N}_i)$ are pairwise disjoint and since the same is true of the sets $Q(\mathcal{N}_i)$, we have, by 2.1 in [1],

$$\dim \mathscr{P}\mathscr{L} = m + k + 3 = \sum_{i=0}^{r} \left[\# P(\mathscr{N}_i) + \# Q(\mathscr{N}_i) \right] + 3$$
$$= \sum_{i=0}^{r} \left[\# \mathscr{N}_i + 1 \right] + 3 = n + r + 4. \quad \blacksquare$$

3. ANNIHILATING FUNCTIONALS FOR \mathcal{RB}

The space \mathscr{RB} generated by the functions $x \mapsto ||x - x_j||$ is a subspace of \mathscr{PL} . In this section we describe \mathscr{RB} in the dual manner—that is, as a family of functions in \mathscr{PL} that satisfy a set of homogeneous linear equations. To this end, we shall define a set of functionals $\varDelta_0, ..., \varDelta_{r+4}$ which annihilate \mathscr{RB} .

All the notation previously defined is retained here, and in addition we set

$$\begin{split} \lambda^{-1} &= (\sigma_m - \sigma_1) + (\tau_k - \tau_1) \\ \sigma_0 &= \sigma_1 - \lambda^{-1}, \qquad \sigma_{m+1} = \sigma_m + \lambda^{-1} \\ \tau_0 &= \tau_1 - \lambda^{-1}, \qquad \tau_{k+1} = \tau_k + \lambda^{-1}. \end{split}$$

Two definitions are given next, along with some elementary consequences without proofs.

3.1. DEFINITION. For each $\sigma \in P(\mathcal{N})$, we define a linear functional ψ_{σ} which can act on any univariate piecewise linear function:

$$\psi_{\sigma}(u) = \lim_{s \downarrow \sigma} u'(s) - \lim_{s \uparrow \sigma} u'(s).$$

3.2. LEMMA. For the function $u(s) = |s - \alpha|$, we have $\psi_{\sigma}(u) = 2$ if $\alpha = \sigma$ and $\psi_{\sigma}(u) = 0$ if $\alpha \neq \sigma$.

3.3. DEFINITION. For $0 \le i \le r$ we define

$$\Psi_i = \sum \{ \Psi_{\sigma} : \sigma \in P(\mathcal{N}_i) \}.$$

3.4. LEMMA. Let $u(s) = |s - \alpha|$. Then $\Psi_i(u) = 2$ if $\alpha \in P(\mathcal{N}_i)$ and $\Psi_i(u) = 0$ if $\alpha \notin P(\mathcal{N}_i)$.

In the same manner, we define functionals θ_{τ} and Θ_i acting on functions of t. Then we define Δ_i on $\mathscr{PL}(\mathscr{N})$ as follows. Given $f \in \mathscr{PL}$, write

$$f(s, t) = u(s) + v(t)$$

with $u \in \mathscr{PL}(\mathcal{P}(\mathcal{N}))$ and $v \in \mathscr{PL}(\mathcal{Q}(\mathcal{N}))$. (This expression is not unique.) Then define

$$\Delta_i(f) = \Psi_i(u) - \Theta_i(v) \qquad (0 \le i \le r).$$

The definition is proper, for if another expression for f is chosen it must be of the form

$$f(s, t) = [u(s) + c] + [v(s) - c]$$

for some constant c. But $\psi_{\sigma}(u+c) = \psi_{\sigma}(u)$, since ψ_{σ} measures the jump in the derivative at σ . Hence $\Psi_i(u+c) = \Psi_i(u)$ and similarly $\Theta_i(v-c) = \Theta_i(v)$.

3.5. LEMMA. Each functional Δ_i , for $0 \le i \le r$, annihilates \mathcal{RB} .

Proof. It suffices to prove that $\Delta_i(h_i) = 0$, where

$$h_j(x) = ||x - x_j|| = |s - s_j| + |t - t_j| = u(s) + v(s) \qquad (1 \le j \le n).$$

If $x_j \in \mathcal{N}_{\alpha}$ then by 2.1, s_j belongs only to $P(\mathcal{N}_{\alpha})$ and t_j belongs only to $Q(\mathcal{N}_{\alpha})$. Hence either $\Psi_i(u) = \Theta_i(v) = 2$ or $\Psi_i(u) = \Theta_i(v) = 0$. Consequently $\Delta_i(h_i) = 0$.

We now define four additional functionals Δ_i (for $r+1 \le i \le r+4$) which annihilate $\Re \mathscr{B}$. Points y_i and z_i are defined as in Fig. 3.1 (which is *not* drawn to scale). The points $z_1, ..., z_4$ are at the corners of the rectangular

FIGURE 3.1

grid. Hence $z_1 = (\sigma_m, \tau_k)$, $z_2 = (\sigma_m, \tau_1)$, $z_3 = (\sigma_1, \tau_1)$, and $z_4 = (\sigma_1, \tau_k)$. The points $y_1, ..., y_4$ are situated as shown, and satisfy

$$||y_1 - z_3||_1 = ||y_2 - z_4||_1 = ||y_3 - z_1||_1 = ||y_4 - z_2||_1 = ||z_2 - z_4||_1 = \lambda^{-1}$$

Now we put, for $1 \leq i \leq 4$,

$$\Delta_{r+i} = \hat{y}_i + \hat{z}_i - (\hat{z}_1 + \hat{z}_2 + \hat{z}_3 + \hat{z}_4).$$

The circumflex signifies a point-evaluation functional.

3.6. LEMMA. The four functionals $\Delta_{r+1}, ..., \Delta_{r+4}$ annihilate $\Re \mathcal{B}$.

Proof. We wish to show that $\Delta_{r+i}(h_j) = 0$ for j = 1, ..., n. Fixing j, we observe that

$$\sum_{i=1}^{4} h_j(z_i) = \sum_{i=1}^{4} \|z_i - x_j\|_1 = \text{perimeter of } RG.$$

For a fixed *i*, let z_{α} be the vertex opposite z_i . Then

$$h_{j}(y_{i}) + h_{j}(z_{i}) = ||y_{i} - x_{j}||_{1} + ||z_{i} - x_{j}||_{1}$$

= $||y_{i} - z_{\alpha}||_{1} + ||z_{\alpha} - x_{j}||_{1} + ||x_{j} - z_{i}||_{1}$
= $||z_{2} - z_{4}||_{1} + ||z_{2} - z_{4}||_{1}$
= perimeter of RG.

By the definition of Δ_{r+i} , we have $\Delta_{r+i}(h_i) = 0$.

The proof that $\{\Delta_0, \Delta_1, ..., \Delta_{r+4}\}$ spans \mathscr{RB}^{\perp} is deferred to Section 5.

4. The Subspace \mathcal{M}

4.1. DEFINITIONS. The subspace \mathcal{M} is defined by

$$\mathcal{M} = \{ f \in \mathcal{PL}(\mathcal{N}) \colon f \mid \mathcal{N} = 0 \}.$$

Further definitions follow. Functions $u_0, u_1, ..., u_r$ are defined in $\mathscr{PL}(\mathbb{R})$ by specifying their knots to be $\sigma_1, ..., \sigma_m$ and specifying their values to be

$$u_i(\sigma_j) = \begin{cases} 1, & \sigma_j \in \mathscr{P}(\mathscr{N}_i) \\ 0, & \text{otherwise} \end{cases} \quad (0 \le j \le m+1).$$

A typical function u_i is graphed in Fig. 4.1. Notice that $u_i(\sigma_0) = u_i(\sigma_{m+1}) = 0$ for all *i*.

FIGURE 4.1

Functions $v_0, v_1, ..., v_r$ are defined to be piecewise linear with knots at $\tau_1, ..., \tau_k$, and having these values

 $v_i(\tau_j) = \begin{cases} 1 & \text{if } \tau_j \in Q(\mathcal{N}_i) \\ 0 & \text{otherwise} \end{cases} \ (0 \leq j \leq k+1).$

Then we define $g_i(s, t) = u_i(s) - v_i(t)$ for $0 \le i \le r$.

4.2. LEMMA. The functions $g_0, ..., g_r$ belong to \mathcal{M} .

Proof. Let x_j be any node. Let \mathcal{N}_{α} be the equivalence class containing x_j . Then $s_j \in \mathcal{P}(\mathcal{N}_{\alpha})$ and $t_j \in \mathcal{Q}(\mathcal{N}_{\alpha})$, by 2.1. We conclude that $g_i(x_j) = 0$.

We now define four additional \mathscr{PL} functions g_i for $r+1 \le i \le r+4$. Each of these vanishes on *RG*. At the special points y_j we assign these values:

$$g_{r+i}(y_i) = \delta_{ii}, \qquad 1 \leq i, j \leq 4.$$

It is clear that each of these functions belongs to \mathcal{M} and the set $\{g_{r+1}, ..., g_{r+4}\}$ is linearly independent. Observe also that $\Delta_{r+i}(g_{r+j}) = \delta_{ij}$, by the definition of Δ_{r+i} in Section 3.

4.3. LEMMA. The four functions $g_{r+1}, ..., g_{r+4}$ form a basis for the subspace of \mathcal{PL} consisting of functions which vanish on the rectangular grid.

Proof. Let f be a \mathscr{PL} -function such that f | RG = 0. Put $c_i = f(y_i)$. We assert that $f = \sum_{1}^{4} c_i g_{r+i}$. For points in RG this is true since each g_{r+i} vanishes on RG. For points outside RG, we use the fact that the values of f at three vertices of a rectangle determine its value at the fourth vertex. With this, we see that f is completely determined by the four values $f(y_1), ..., f(y_4)$. For example, the values $f(y_1), f(\sigma_1, \tau_1) = f(\sigma_1, \tau_2) = 0$ determine f in the strip where $\tau_1 \leq t \leq \tau_2$ and $s \leq \sigma_1$.

4.4. LEMMA. The function $\bar{g} = g_0 + \cdots + g_r$ vanishes on the rectangular grid.

LIGHT AND CHENEY

Proof. Observe that $\bar{g} \in \mathscr{PL}$. By 2.1 in [1], it suffices to prove that \bar{g} vanishes at the points

$$(\sigma_1, \tau_j), \quad (\sigma_\mu, \tau_1) \quad (1 \leq j \leq k, 1 \leq \mu \leq m).$$

We have

$$\bar{g}(\sigma_1, \tau_j) = \sum_{i=0}^r u_i(\sigma_1) - \sum_{i=0}^r v_i(\tau_j) = 1 - 1 = 0$$

because σ_1 belongs to exactly one set $P(\mathcal{N}_{\alpha})$ and $u_{\alpha}(\sigma_1) = 1$, while all other $u_i(\sigma_1) = 0$. Similarly, $\sum_{i=0}^{r} v_i(\tau_j) = 1$. Analogous arguments are used at the other points.

4.5. LEMMA. The set $\{g_1, g_2, ..., g_{r+4}\}$ is linearly independent. Proof. Suppose that $\sum_{i=1}^{r} c_i g_i - \sum_{i=1}^{4} a_i g_{r+i} = 0$. It follows that

$$\sum_{i=1}^{r} c_i g_i | RG = \sum_{i=1}^{4} a_i g_{r+i} | RG = 0.$$

Select a point (s, t) with $s \in P(N_j), j \neq 0, t \in Q(\mathcal{N}_0)$. Then

$$0 = \sum_{i=1}^{r} c_i g_i(s, t) = \sum_{i=1}^{r} c_i [u_i(s) - v_i(t)] = c_j.$$

Next evaluate $\sum_{i=1}^{4} a_i g_{r+i}$ at y_j to see that $a_j = 0$.

4.6. LEMMA. Let f be a \mathscr{PL} -function which is constant on some equivalence class, \mathcal{N}_i . Let f(s, t) = u(s) + v(t). Then u is constant on $P(\mathcal{N}_i)$ and v is constant on $Q(\mathcal{N}_i)$.

Proof. Let s and s' be any two points of $P(\mathcal{N}_i)$. Then there exist points t and t' such that $(s, t) \in \mathcal{N}_i$ and $(s', t') \in \mathcal{N}_i$. By the definition of an equivalence class, the points (s, t) and (s', t') are connected by an open path whose vertices lie in \mathcal{N}_i . On any horizontal segment of this path, say from (σ, τ) to (σ', τ) , we have (since f is constant on \mathcal{N}_i)

$$u(\sigma) + v(\tau) = u(\sigma') + v(\tau)$$

whence $u(\sigma) = u(\sigma')$. On any vertical segment also the value of u does not change. Thus as the path is traversed, the value of u does not change, and u(s) = u(s'). Similarly, v is constant on $Q(\mathcal{N}_i)$.

4.7. THEOREM. Suppose that the node set N has exactly n point, contains no closed path, and has r + 1 equivalence classes. Then

(i)
$$\mathscr{PL} = \mathscr{RB} \oplus \mathscr{M}$$

(ii)
$$\{g_1, g_2, ..., g_{r+4}\}$$
 is a basis for *M*

(iii) $\sum_{i=0}^{r+1} g_i - g_{r+2} + g_{r+3} - g_{r+4} = 0.$

Proof. Obviously $\Re \mathcal{B} + \mathcal{M} \subset \mathscr{PL}$. If $f \in \mathscr{PL}$ then by 7.8 in [1] there is a unique $h \in \Re \mathcal{B}$ that interpolates f on \mathcal{N} . Hence $f - h \in \mathcal{M}$ and $f \in \Re \mathcal{B} + \mathcal{M}$. Thus $\mathscr{PL} = \Re \mathcal{B} + \mathcal{M}$. That $\Re \mathcal{B} \cap \mathcal{M} = 0$ follows from 7.8 in [1], since the only $\Re \mathcal{B}$ interpolant for zero data on \mathcal{N} is the 0-element of $\Re \mathcal{B}$.

From 2.3, dim $\mathscr{PL} = n + r + 4$. Since dim $\mathscr{RB} = n$, we have dim $\mathscr{M} = r + 4$. By 4.5, $\{g_1, ..., g_{r+4}\}$ is linearly independent and therefore is a basis for \mathscr{M} .

Now let $\bar{g} = \sum_{0}^{r} g_i$. By 4.4, \bar{g} is a \mathscr{PL} -function which vanishes on the rectangular grid. By 4.3, there exist coefficients α_{r+i} such that $\bar{g} = \sum_{1}^{4} \alpha_{r+i} g_{r+i}$. By evaluating at the four points $y_1, ..., y_4$ we find that $\alpha_{r+i} = (-1)^i$.

5. A DUAL ALGORITHM FOR *RB*-INTERPOLATION

The direct method of computing an \mathcal{RB} -interpolant to a data function simply solves the interpolation equations

$$\sum_{j=1}^{n} a_{j} \|x_{i} - x_{j}\|_{1} = d_{i} \qquad (1 \le i \le n).$$

An alternative method proceeds by first solving the interpolation problem with a function f in \mathscr{PL} . One can use the method of Section 4 in [1] to do this. By 4.7, f has a unique representation

$$f = h + g, \quad h \in \mathcal{RB}, g \in \mathcal{M}.$$

Also by 4.7, g is expressible in terms of the functions g_i , say $g = \sum_{j=1}^{r+4} a_j g_j$. The coefficients a_j can be determined from the condition $f - g \in \mathcal{RB}$, which is equivalent to

$$\Delta_i(f-g) = 0, \qquad 1 \le i \le r+4$$

by 5.10 infra. These equations lead to the system

$$\sum_{j=1}^{r+4} \Delta_i(g_j) a_j = \Delta_i(f) \qquad (1 \le i \le r+4).$$

The invertibility of the matrix $(\Delta_i(g_i))$ follows from 7.8 in [1].

In order to carry out this dual algorithm, it will be necessary to evaluate the elements $\Delta_i(g_i)$ in the coefficient matrix. In this section these elements are computed.

Recall the definitions of Δ_i and g_j given in Sections 3 and 4. In addition, define functionals ψ_{σ}^{+} and ψ_{σ}^{-} for any $\sigma \in \mathbb{R}$ by the equations

$$\psi_{\sigma}^{+}(u) = \lim_{s \downarrow \sigma} u'(s)$$
$$\psi_{\sigma}^{-}(u) = \lim_{s \uparrow \sigma} u'(s).$$

5.1. LEMMA. If $0 \leq i \leq r$, then the value of $\Psi_i(u_i)$ is the sum of all terms $(\sigma_{\mu-1} - \sigma_{\mu})^{-1}$ for which either

- (i) $\sigma_{\mu} \in P(\mathcal{N}_i)$ and $\sigma_{\mu-1} \notin P(\mathcal{N}_i)$ or (ii) $\sigma_{\mu} \notin P(\mathcal{N}_i)$ and $\sigma_{\mu-1} \in P(\mathcal{N}_i)$.

Proof. If $\sigma_{\mu} \in P(\mathcal{N}_i)$ then

$$\psi_{\sigma_{\mu}}^{+}(u_{i}) = [u_{i}(\sigma_{\mu+1}) - u_{i}(\sigma_{\mu})](\sigma_{\mu+1} - \sigma_{\mu})^{-1}$$
$$= \begin{cases} (\sigma_{\mu} - \sigma_{\mu+1})^{-1} & \text{if } \sigma_{\mu+1} \notin P(\mathcal{N}_{i}) \\ 0 & \text{if } \sigma_{\mu+1} \in P(\mathcal{N}_{i}) \end{cases}$$

Similarly,

$$\psi_{\sigma_{\mu}}^{-}(u_{i}) = \begin{cases} (\sigma_{\mu} - \sigma_{\mu-1})^{-1} & \text{if } \sigma_{\mu-1} \notin P(\mathcal{N}_{i}) \\ 0 & \text{if } \sigma_{\mu-1} \in P(\mathcal{N}_{i}). \end{cases}$$

It follows that

$$\begin{aligned} \Psi_{i}(u_{i}) &= \sum \left\{ \psi_{\sigma}(u_{i}) : \sigma \in P(\mathcal{N}_{i}) \right\} \\ &= \sum \left\{ \psi_{\sigma}^{+}(u_{i}) : \sigma \in P(\mathcal{N}_{i}) \right\} - \sum \left\{ \psi_{\sigma}^{-}(u_{i}) : \sigma \in P(\mathcal{N}_{i}) \right\} \\ &= \sum \left\{ (\sigma_{\mu} - \sigma_{\mu+1})^{-1} : \sigma_{\mu} \in P(\mathcal{N}_{i}) \text{ and } \sigma_{\mu+1} \notin P(\mathcal{N}_{i}) \right\} \\ &- \sum \left\{ (\sigma_{\mu} - \sigma_{\mu-1})^{-1} : \sigma_{\mu} \in P(\mathcal{N}_{i}) \text{ and } \sigma_{\mu-1} \notin P(\mathcal{N}_{i}) \right\} \\ &= \sum \left\{ (\sigma_{\mu-1} - \sigma_{\mu})^{-1} : \sigma_{\mu-1} \in P(\mathcal{N}_{i}) \text{ and } \sigma_{\mu} \notin P(\mathcal{N}_{i}) \right\} \\ &+ \sum \left\{ (\sigma_{\mu-1} - \sigma_{\mu})^{-1} : \sigma_{\mu} \in P(\mathcal{N}_{i}) \text{ and } \sigma_{\mu-1} \notin P(\mathcal{N}_{i}) \right\}. \end{aligned}$$

5.2. LEMMA. If $0 \le i, j \le r$ and $i \ne j$, then $\Psi_i(u_j)$ is the sum of all terms $(\sigma_{\mu} - \sigma_{\mu-1})^{-1}$ where either

- (i) $\sigma_{\mu} \in P(\mathcal{N}_i)$ and $\sigma_{\mu-1} \in P(\mathcal{N}_i)$ or
- (ii) $\sigma_u \in P(\mathcal{N}_i)$ and $\sigma_{u-1} \in P(\mathcal{N}_i)$.

Proof. If $\sigma_{\mu} \in P(\mathcal{N}_i)$ then

$$\psi_{\sigma_{\mu}}^{+}(u_{j}) = u_{j}(\sigma_{\mu+1})(\sigma_{\mu+1} - \sigma_{\mu})^{-1}.$$

This is $(\sigma_{\mu+1} - \sigma_{\mu})^{-1}$ if $\sigma_{\mu+1} \in P(\mathcal{N}_j)$ and is 0 otherwise. Hence as in the preceding proof

$$\sum \left\{ \psi_{\sigma}^{+}(u_{j}): \sigma \in P(\mathcal{N}_{i}) \right\}$$
$$= \sum \left\{ (\sigma_{\mu+1} - \sigma_{\mu})^{-1}: \sigma_{\mu} \in P(\mathcal{N}_{i}) \text{ and } \sigma_{\mu+1} \in P(\mathcal{N}_{j}) \right\}$$
$$= \sum \left\{ (\sigma_{\mu} - \sigma_{\mu-1})^{-1}: \sigma_{\mu-1} \in P(\mathcal{N}_{i}) \text{ and } \sigma_{\mu} \in P(\mathcal{N}_{j}) \right\}.$$

The calculation of $\sum \{\psi_{\sigma}^{-}(u_{i}): \sigma \in P(\mathcal{N}_{i})\}\$ is similar.

All of what has been proved for the matrix with elements $\Psi_i(u_j)$ can be proved for $\Theta_i(v_j)$, mutatis mutandis. Then for $0 \le i, j \le r$,

$$\Delta_i(g_j) = \Delta_i(u_j - v_j) = \Psi_i(u_j) - \Theta_i(-v_j) = \Psi_i(u_j) + \Theta_i(v_j).$$

In what follows $\Delta_i(g_j)$ will be computed in the remaining cases, $r < i \le r+4$ and $r < j \le r+4$. It is necessary to single out the equivalence classes which contain nodes on the boundary of *RH*. To do so, we define integers ε_v for $0 \le v \le 4$ by the equations

$$\varepsilon_0 = \varepsilon_4, \qquad \sigma_1 \in P(\mathcal{N}_{\varepsilon_4}), \qquad \sigma_m \in P(\mathcal{N}_{\varepsilon_2}), \qquad \tau_1 \in Q(\mathcal{N}_{\varepsilon_3}), \qquad \tau_k \in Q(\mathcal{N}_{\varepsilon_1}).$$

The indices ε_1 , ε_2 , ε_3 , ε_4 are not necessarily distinct.

5.3. LEMMA. The following formula is valid

$$\Delta_i(g_{r+\nu}) = \lambda(-1)^{\nu-1} \,\delta(i,\varepsilon_{\nu-1}) \qquad (0 \le i \le r, \ 1 \le \nu \le 4).$$

In this formula, $\lambda = ||z_2 - z_4||^{-1}$ and δ is the Kronecker symbol.

Proof. Recall that $g_{r+\nu}$ is a \mathscr{PL} -function which vanishes on RG and takes these values:

$$g_{r+v}(y_i) = \delta_{iv} \qquad (1 \le i, v \le 4).$$

This function can be expressed in the form

$$g_{r+v}(s, t) = u_{r+v}(s) - v_{r+v}(t)$$
 $(1 \le v \le 4).$

The functions on the right in this equation take zero values on σ_j and τ_j except in these cases:

 $u_{r+1}(\sigma_0) = 1$, $v_{r+2}(\tau_{k+1}) = -1$, $u_{r+3}(\sigma_{m+1}) = 1$, $v_{r+4}(\tau_0) = -1$.

Consequently we have

$$\psi_{\sigma_1}(u_{r+1}) = (\sigma_1 - \sigma_0)^{-1} = \lambda, \quad \psi_{\sigma_m}(u_{r+3}) = \lambda, \\ \theta_{\tau_1}(v_{r+4}) = -\lambda, \quad \theta_{\tau_k}(v_{r+2}) = -\lambda.$$

In all other cases, $\psi_{\sigma_i}(u_{r+\nu}) = \theta_{\tau_i}(v_{r+\nu}) = 0$. Hence

$$\Psi_i(u_{r+1}) = \begin{cases} \lambda & \text{if } \sigma_1 \in P(\mathcal{N}_i) \\ 0 & \text{if } \sigma_1 \notin P(\mathcal{N}_i). \end{cases}$$

Likewise, $\Theta_i(v_{r+1}) = 0$, and so

$$\Delta_i(g_{r+1}) = \Psi_i(u_{r+1}) + \Theta_i(v_{r+1}) = \lambda \,\delta(i, \varepsilon_4).$$

In a similar fashion we find that

$$\begin{split} \Delta_i(g_{r+2}) &= \Theta_i(v_{r+2}) = -\lambda \,\delta(i,\varepsilon_1) \\ \Delta_i(g_{r+3}) &= \Psi_i(u_{r+3}) = \lambda \,\delta(i,\varepsilon_2) \\ \Delta_i(g_{r+4}) &= \Theta_i(v_{r+4}) = -\lambda \,\delta(i,\varepsilon_3). \end{split}$$

Hence the formula in the statement of the lemma is valid, with the interpretation that $\varepsilon_0 = \varepsilon_4$.

5.4. Lemma. For $1 \leq v \leq 4$ and $0 \leq j \leq r$ we have

$$C_{\nu j} = \Delta_{r+\nu}(g_j) = -\bar{\mu}_j + (-1)^{\nu} \,\delta(j,\varepsilon_{\nu-1})$$

in which $\bar{\mu}_j = \sum_{\nu=1}^4 (-1)^{\nu} \delta(j, \varepsilon_{\nu})$.

Proof. One can verify these formulae:

$$g_{j}(y_{\nu}) = (-1)^{\nu} \,\delta(j, \varepsilon_{\nu+2})$$

$$g_{j}(z_{\nu}) = (-1)^{\nu} \,\delta(j, \varepsilon_{\nu}) + (-1)^{\nu+1} \,\delta(j, \varepsilon_{\nu+1})$$

$$g_{j}(z_{1}) + g_{j}(z_{2}) + g_{j}(z_{3}) + g_{j}(z_{4}) = 2\bar{\mu}_{j}.$$

For example, when v = 1, the first formula is proved by observing that

$$g_j(y_1) \neq 0 \Rightarrow \tau_1 \in Q(\mathcal{N}_j) \Rightarrow j = \varepsilon_3 \Rightarrow g_j(y_1) = -v_j(\tau_1) = -1.$$

When v = 3, the second formula is established as follows. Observe that $g_j(z_3) \neq 0$ only if $j = \varepsilon_3$ or $j = \varepsilon_4$. If $j = \varepsilon_3 \neq \varepsilon_4$, then $g_j(z_3) = u_j(\sigma_1) - v_j(\tau_1) = 0 - 1 = -1$. If $j = \varepsilon_4 \neq \varepsilon_3$, then $g_j(z_3) = u_j(\sigma_1) = 1$. If $j = \varepsilon_3 = \varepsilon_4$ then $g_j(z_3) = 1 - 1 = 0$. With these formulae established, one verifies easily the assertion of the lemma.

5.5. LEMMA. If $\sum_{i=0}^{r+4} b_i \Delta_i = 0$ then $b_{r+1} + \lambda b_{e_4} = b_{r+2} - \lambda b_{e_1} = b_{r+3} + \lambda b_{e_2} = b_{r+4} - \lambda b_{e_3} = 0.$

Proof. We prove just one of these, viz. $b_{r+2} - \lambda b_{e_1} = 0$. The others are similar. Construct a function v having the appearance shown in Fig. 5.1. Then put f(s, t) = v(t). We have

$$\begin{split} \mathcal{A}_{r+\nu}(f) &= \begin{cases} 1 & \text{if } \nu = 2\\ 0 & \text{otherwise } (1 \leq \nu \leq 4) \end{cases} \\ \mathcal{A}_i(f) &= -\Theta_i(\nu) = \begin{cases} -\lambda & \text{if } i = \varepsilon_1\\ 0 & \text{otherwise } (0 \leq i \leq r). \end{cases} \end{split}$$

Consequently

$$0 = \sum_{i=0}^{r+4} b_i \Delta_i(f) = -\lambda b_{\varepsilon_1} + b_{r+2}.$$

5.6. LEMMA. If $\sum_{i=0}^{r+4} b_i \Delta_i = 0$, then

$$b_{r+1} + b_{r+2} + b_{r+3} + b_{r+4} = (b_{\varepsilon_2} - b_{\varepsilon_4})/(\sigma_m - \sigma_1).$$

Proof. Consider the function $u \in \mathscr{PL}(\mathbb{R})$ whose graph is shown in Fig. 5.2. Put f(s, t) = u(s). Then

$$f(z_3) = f(z_4) = f(y_1) = f(y_2) = 1$$

$$f(z_2) = f(z_1) = f(y_3) = f(y_4) = 0.$$

FIGURE 5.1

FIGURE 5.2

Consequently $\Delta_{r+\nu}(f) = -1$ for $1 \le \nu \le 4$. For $0 \le i \le r$ we have $\Delta_i(f) = 0$ in all cases with two exceptions, namely, $\Delta_{\varepsilon_2}(f) = -\Delta_{\varepsilon_4}(f) = (\sigma_m - \sigma_1)^{-1}$. Thus

$$0 = \sum_{i=0}^{r+4} b_i \Delta_i(f) = -\sum_{\nu=1}^4 b_{r+\nu} + (b_{\epsilon_2} - b_{\epsilon_4})(\sigma_m - \sigma_1)^{-1}.$$

5.7. LEMMA. If r + 1 < n and if $\sum_{0}^{r+4} b_i \Delta_i = 0$ then $b_0 = b_1 = \cdots = b_r$.

Proof. The hypothesis states that the number of equivalence classes is less than *n*. Consequently some equivalence class contains at least two elements. By a renumbering of the equivalence classes we can assume that $\#\mathcal{N}_0 \ge 2$. Either $\#P(\mathcal{N}_0) \ge 2$ or $\#Q(\mathcal{N}_0) \ge 2$, and we assume the former. Let $a, b \in P(\mathcal{N}_0)$, with a < b. Select any $j \in \{1, ..., r\}$. We shall prove that $b_j = b_0$. Select $c \in P(\mathcal{N}_j)$.

Case 1. Assume c < a. Define f by

$$f(s, t) = u(s) = \begin{cases} 0, & s \le c \\ (a-c)^{-1} (s-c), & c < s < a \\ -(b-a)^{-1} (s-b), & a < s < b \\ 0, & s \ge b. \end{cases}$$

Then $f \in \mathscr{PL}$, and for each s, $f(s, \cdot)$ is constant. Furthermore, f vanishes on the eight points y_v , z_v . As a consequence $\Delta_{r+i}(f) = 0$ for $1 \le i \le 4$. For $0 \le i \le r$, $\Delta_i(f) = \Psi_i(u)$. Since Ψ_i measures jumps in derivatives at points of $P(\mathcal{N}_i)$, we have $\Psi_i(u) = 0$ for all i (except i = 0 and i = j) in the range $0 \le i \le r$. Thus after computing we have

$$0 = \sum b_i \Delta_i(f) = b_0 \Psi_0(u) + b_j \Psi_j(u) = (a - c)^{-1} (b_j - b_0).$$

Case 2. We assume that a < c < b. Define

$$f(s, t) = u(s) = \begin{cases} 0, & s \le a \\ (c-a)^{-1} (s-a), & a \le s \le c \\ -(b-c)^{-1} (s-b), & c \le s \le b \\ 0, & s \ge b. \end{cases}$$

Proceeding as before we arrive at

$$0 = b_0 \Psi_0(u) + b_j \Psi_j(u) = [(b-c)^{-1} + (c-a)^{-1}](b_0 - b_j).$$

Case 3. b < c. The calculations are like those in Case 1.

5.8. LEMMA. Let r + 1 = n and $\sum_{i=0}^{r+4} b_i \Delta_i = 0$. Then for i = 0, 1, ..., r,

$$b_i = \lambda_i b_{\varepsilon_4} + (1 - \lambda_i) b_{\varepsilon_2},$$

where $\lambda_i = (\sigma_m - \sigma)/(\sigma_m - \sigma_1)$ and $\sigma \in P(\mathcal{N}_i)$.

Proof. If $i = \varepsilon_4$ or $i = \varepsilon_2$ the formula is trivial. We therefore assume $i \neq \varepsilon_4$ and $i \neq \varepsilon_2$. Then $\sigma \neq \sigma_1$ and $\sigma \neq \sigma_m$. Construct a function $u \in \mathscr{PL}(\mathbb{R})$ as shown in Fig. 5.3. Let f(s, t) = u(s). Then

$$0 = \sum_{j=0}^{r+4} b_j \Delta_j(f) = b_{e_2} \frac{1}{\sigma_m - \sigma} + b_{e_4} \frac{1}{\sigma - \sigma_1} - b_i \left(\frac{1}{\sigma_m - \sigma} + \frac{1}{\sigma - \sigma_1}\right)$$

Consequently

$$b_{\varepsilon_2}(\sigma-\sigma_1)+b_{\varepsilon_4}(\sigma_m-\sigma)-b_i(\sigma_m-\sigma_1)=0$$

whence

$$b_i = \lambda_i b_{\varepsilon_4} + (1 - \lambda_i) b_{\varepsilon_2}.$$

5.9. LEMMA. Let r + 1 = n and $\sum_{i=0}^{r+4} b_i \Delta_i = 0$. Then $b_0 = b_1 = \cdots = b_r$.

Proof. From 5.7, $b_i = \lambda_i b_{\epsilon_4} + (1 - \lambda_i) b_{\epsilon_2}$ where $0 < \lambda_i < 1$, i = 0, ..., r. Assume that $b_{\epsilon_4} \leq b_{\epsilon_2}$. From the equivalent lemma to 5.7 using the *t*-variable,

 $b_i = \mu_i b_{\epsilon_i} + (1 - \mu_i) b_{\epsilon_i}$, where $0 < \mu_i < 1, i = 0, 1, ..., r$.

From this we see that either $\varepsilon_1 = \varepsilon_4$ and $\varepsilon_2 = \varepsilon_3$ or $\varepsilon_1 = \varepsilon_2$, $\varepsilon_3 = \varepsilon_4$.

Case (i). $\varepsilon_1 = \varepsilon_4$ and $\varepsilon_2 = \varepsilon_3$. Then $b_{r+1} + b_{r+2} = b_{r+3} + b_{r+4} = 0$ by 5.6, and so the previous lemma shows $b_{\varepsilon_4} = b_{\varepsilon_2}$. It then follows that $b_{\varepsilon_4} = b_{\varepsilon_2} = b_i$, i = 0, ..., r.

FIGURE 5.3

Case (ii). $\varepsilon_1 = \varepsilon_2$ and $\varepsilon_3 = \varepsilon_4$. Then $b_{r+2} + b_{r+3} = b_{r+1} + b_{r+4} = 0$ by 5.6, and so the previous lemma shows again that $b_{\varepsilon_4} = b_{\varepsilon_2}$. It then follows again that $b_{\varepsilon_4} = b_{\varepsilon_2} = b_i$, i = 0, ..., r.

5.10. THEOREM. If \mathcal{N} contains no closed path, then the space \mathcal{RB}^{\perp} is spanned by the set $\{\Delta_0, ..., \Delta_{r+4}\}$. The only dependence among these functionals, aside from a scalar multiple, is

$$\sum_{i=0}^{r} \Delta_{i} + \lambda \sum_{i=1}^{4} (-1)^{i+1} \Delta_{r+i} = 0.$$

Proof. If $\sum_{0}^{r+4} b_i \Delta_i = 0$, then by 5.7 and 5.9, $b_0 = b_1 = \cdots = b_r$. By 5.5, $b_{r+\nu} = (-1)^{\nu} \lambda b_0$ for $\nu = 1, ..., 4$. This proves the second assertion of the theorem and that $\{\Delta_0, ..., \Delta_{r+4}\}$ spans a space of dimension r+4. This space is in $\Re \mathscr{B}^{\perp}$ by 3.5 and 3.6. By 2.3, we have

 $n + r + 4 = \dim \mathscr{PL} = \dim \mathscr{RB} + \dim \mathscr{RB}^{\perp} = n + \dim \mathscr{RB}^{\perp}$

and so dim $\Re \mathscr{B}^{\perp} = r + 4$.

References

 N. DYN, W. A. LIGHT, AND E. W. CHENEY, Interpolation by piecewise-linear radial basis functions, J. Approx. Theory 59 (1989), 202–223.